Lair of FinFarenath
All about Transistors
HalfDragon : : Home : : HobbiesSection > ElectronicsInGeneral : : TransistorsHowto 
About FinFarenath
Interests 'n' Hobbies
Friend's Lair
Site Map
Log In
26 Jun 2017|guest


Under Construction still General information about transistors. / What is a transistor

Function of a Transistor

Transistors amplify current, for example they can be used to amplify the small output current from a logic chip so that it can operate a lamp, relay or other high current device. In many circuits a resistor is used to convert the changing current to a changing voltage, so the transistor is being used to amplify voltage.

A transistor may be used as a switch (either fully on with maximum current, or fully off with no current) and as an amplifier (always partly on).

The amount of current amplification is called the current gain, symbol hFE.

Types of Transistors

There are two types of standard transistors, NPN and PNP, with different circuit symbols. The letters refer to the layers of semiconductor material used to make the transistor. Most transistors used today are NPN because this is the easiest type to make from silicon. If you are new to electronics it is best to start by learning how to use NPN transistors.

The leads are labeled base (B), collector (C) and emitter (E). These terms refer to the internal operation of a transistor but they are not much help in understanding how a transistor is used, so just treat them as labels.

In addition to standard (bipolar junction) transistors, there are field-effect transistors which are usually referred to as FETs. They have different circuit symbols and properties and are not discussed here.

Darlington Pair

DarlingtonPair.gifA Darlington pair of transistors is two transistors connected together so that the amplified current from the first is amplified further by the second transistor. This gives the Darlington pair a very high current gain such as 10000. Darlington pairs are sold as complete packages containing the two transistors. They have three leads (B, C and E) which are equivalent to the leads of a standard individual transistor.

If you want to have a personally designed Darlington pair from two transistors. For example:

  • For TR1 use BC548B with hFE1 = 220.
  • For TR2 use BC639 with hFE2 = 40.

The overall gain of this pair is hFE1 hFE2 = 220 40 = 8800. The pair's maximum collector current IC(max) is the same as TR2.


TransistorConnectors.gifTransistors have three leads which must be connected the correct way round. Please take care with this because an incorrectly connected transistor may be damaged instantly when you switch on.

If you are lucky the orientation of the transistor will be clear from the PCB or stripboard layout diagram, otherwise you will need to refer to a supplier's catalogue to identify the leads.

The drawings on the right show the leads for some of the most common case styles.

Please note that transistor lead diagrams show the view from below with the leads towards you. This is the opposite of IC (chip) pin diagrams which show the view from above.

Tips for soldering a Transistor

Transistors can be damaged by heat when soldering so if you are not an expert it is wise to use a heat sink clipped to the lead between the joint and the transistor body. A standard crocodile clip can be used as a heat sink.

Waste heat is produced in transistors due to the current flowing through them. Heat sinks are needed for power transistors because they pass large currents. If you find that a transistor is becoming too hot to touch it certainly needs a heat sink! The heat sink helps to dissipate (remove) the heat by transferring it to the surrounding air.


Transistors can be damaged by heat when soldering or by misuse in a circuit. If you suspect that a transistor may be damaged there are two easy ways to test it:

Testing with a Multimeter

Use a multimeter or a simple tester (battery, resistor and LED) to check each pair of leads for conduction. Set a digital multimeter to diode test and an analogue multimeter to a low resistance range.

Test each pair of leads both ways (six tests in total):

  • The base-emitter (BE) junction should behave like a diode and conduct one way only.
  • The base-collector (BC) junction should behave like a diode and conduct one way only.
  • The collector-emitter (CE) should not conduct either way.

The diagram shows how the junctions behave in an NPN transistor. The diodes are reversed in a PNP transistor but the same test procedure can be used.

Testing with a simple Circuit

Connect the transistor into the circuit shown on the right which uses the transistor as a switch. The supply voltage is not critical, anything between 5 and 12V is suitable. This circuit can be quickly built on breadboard for example. Take care to include the 10kohm resistor in the base connection or you will destroy the transistor as you test it!

If the transistor is OK the LED should light when the switch is pressed and not light when the switch is released.

To test a PNP transistor use the same circuit but reverse the LED and the supply voltage.

Some multimeters have a 'transistor test' function which provides a known base current and measures the collector current so as to display the transistor's DC current gain hFE.

Transistor Table

Most projects will specify a particular transistor, but if necessary you can usually substitute an equivalent transistor from the wide range available. The most important properties to look for are the maximum collector current IC and the current gain hFE. To make selection easier most suppliers group their transistors in categories determined either by their typical use or maximum power rating.

To make a final choice you will need to consult the tables of technical data which are normally provided in catalogs. They contain a great deal of useful information but they can be difficult to understand if you are not familiar with the abbreviations used. The table below shows the most important technical data for some popular transistors, tables in catalogs and reference books will usually show additional information but this is unlikely to be useful unless you are experienced.


This shows the type of transistor, NPN or PNP. The polarities of the two types are different, so if you are looking for a substitute it must be the same type.

Case style:
There is a diagram showing the leads for some of the most common case styles in the Connecting section above. This information is also available in suppliers' catalogs.

IC max.:
Maximum collector current.

VCE max.:
Maximum voltage across the collector-emitter junction. You can ignore this rating in low voltage circuits.

This is the current gain (strictly the DC current gain). The guaranteed minimum value is given because the actual value varies from transistor to transistor - even for those of the same type! Note that current gain is just a number so it has no units. The gain is often quoted at a particular collector current IC which is usually in the middle of the transistor's range, for example '100@20mA' means the gain is at least 100 at 20mA. Sometimes minimum and maximum values are given. Since the gain is roughly constant for various currents but it varies from transistor to transistor this detail is only really of interest to experts.

Ptot max.:
Maximum total power which can be developed in the transistor, note that a heat sink will be required to achieve the maximum rating. This rating is important for transistors operating as amplifiers, the power is roughly IC VCE. For transistors operating as switches the maximum collector current (IC max.) is more important.

Category This shows the typical use for the transistor, it is a good starting point when looking for a substitute. Catalogues may have separate tables for different categories. Possible substitutes These are transistors with similar electrical properties which will be suitable substitutes in most circuits. However, they may have a different case style so you will need to take care when placing them on the circuit board.

Naming of Transistors

  • Codes beginning with B (or A), for example BC108, BC478:
The first letter B is for silicon, A is for germanium (rarely used now). The second letter indicates the type; for example C means low power audio frequency; D means high power audio frequency; F means low power high frequency. The rest of the code identifies the particular transistor. There is no obvious logic to the numbering system. Sometimes a letter is added to the end (eg BC108C) to identify a special version of the main type, for example a higher current gain or a different case style. If a project specifies a higher gain version (BC108C) it must be used, but if the general code is given (BC108) any transistor with that code is suitable.
  • Codes beginning with TIP, for example TIP31A:
TIP refers to the manufacturer: Texas Instruments Power transistor. The letter at the end identifies versions with different voltage ratings.
  • Codes beginning with 2N, for example 2N3053:
The initial '2N' identifies the part as a transistor and the rest of the code identifies the particular transistor. There is no obvious logic to the numbering system.

All content is copyright © 1989-2007 by FinFarenath. All material on this website is the property of the author. Any copying or quoting from this text is forbidden and requires a written permission of the author. The legal disclaimer applies for all the pages found under this domain. Ideas, requests, problems regarding FinFarenath's dragons lair - send feedback. This site was created at 19 Oct 2007.